Complete list of Darboux Integrable Chains of the form t 1 x = t x + d ( t , t 1 )

نویسندگان

  • Natalya Zheltukhina
  • Aslı Pekcan
چکیده

We study differential-difference equation of the form d dx t(n+ 1, x) = f(t(n, x), t(n + 1, x), d dx t(n, x)) with unknown t(n, x) depending on continuous and discrete variables x and n. Equation of such kind is called Darboux integrable, if there exist two functions F and I of a finite number of arguments x, {t(n ± k, x)}k=−∞, { d dxk t(n, x) }∞ k=1 , such that DxF = 0 and DI = I, where Dx is the operator of total differentiation with respect to x, and D is the shift operator: Dp(n) = p(n+1). Reformulation of Darboux integrability in terms of finiteness of two characteristic Lie algebras gives an effective tool for classification of integrable equations. The complete list of Darboux integrable equations is given in the case when the function f is of the special form f(u, v,w) = w + g(u, v).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomially bounded solutions of the Loewner‎ ‎differential equation in several complex variables

‎We determine the‎ ‎form of polynomially bounded solutions to the Loewner differential ‎equation that is satisfied by univalent subordination chains of the‎ ‎form $f(z,t)=e^{int_0^t A(tau){rm d}tau}z+cdots$‎, ‎where‎ ‎$A:[0,infty]rightarrow L(mathbb{C}^n,mathbb{C}^n)$ is a locally‎ ‎Lebesgue integrable mapping and satisfying the condition‎ ‎$$sup_{sgeq0}int_0^inftyleft|expleft{int_s^t‎ ‎[A(tau)...

متن کامل

The existence results for a coupled system of nonlinear fractional differential equations with multi-point boundary conditions

In this paper, we study a coupled system of nonlinear fractional differential equations with multi-point boundary condi- tions. The differential operator is taken in the Riemann-Liouville sense. Applying the Schauder fixed-point theorem and the contrac- tion mapping principle, two existence results are obtained for the following system D^{alpha}_{0+}x(t)=fleft(t,y(t),D^{p}_{0+}y(t)right), t in (0,...

متن کامل

Relationships between Darboux Integrability and Limit Cycles for a Class of Able Equations

We consider the class of polynomial differential equation x&= , 2(,)(,)(,)nnmnmPxyPxyPxy++++2(,)(,)(,)nnmnmyQxyQxyQxy++&=++. For where and are homogeneous polynomials of degree i. Inside this class of polynomial differential equation we consider a subclass of Darboux integrable systems. Moreover, under additional conditions we proved such Darboux integrable systems can have at most 1 limit cycle.

متن کامل

Periodic solutions of fourth-order delay differential equation

In this paper the periodic solutions of fourth order delay differential equation of the form $ddddot{x}(t)+adddot{x}(t)+f(ddot{x}(t-tau(t)))+g(dot{x}(t-tau(t)))+h({x}(t-tau(t)))=p(t)$  is investigated. Some new positive periodic criteria are given.  

متن کامل

Suzuki-type fixed point theorems for generalized contractive mappings‎ ‎that characterize metric completeness

‎Inspired by the work of Suzuki in‎ ‎[T. Suzuki‎, ‎A generalized Banach contraction principle that characterizes metric completeness‎, Proc‎. ‎Amer‎. ‎Math‎. ‎Soc. ‎136 (2008)‎, ‎1861--1869]‎, ‎we prove a fixed point theorem for contractive mappings‎ ‎that generalizes a theorem of Geraghty in [M.A‎. ‎Geraghty‎, ‎On contractive mappings‎, ‎Proc‎. ‎Amer‎. ‎Math‎. ‎Soc., ‎40 (1973)‎, ‎604--608]‎an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009